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Slow decay of the finite Reynolds number effect of turbulence
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The third-order structure function is used to study the finite Reynolds nu(fiBaN) effect of turbulence,
which refers to the deviation of turbulence statistics observed at finite Reynolds numbers from predictions of
the Kolmogorov theories. It is found that the FRN effect decreas&R3s*, whenR, is high, andu<6/5.
HereR, is the Taylor-microscale Reynolds number @ds a constant independent Bf . From the exact
spectral equations, the decay expongntand the constan€C are determined for typical fully developed
turbulent flows (freely decaying isotropic turbulence and shear flow turbulgnse that the quantitative
prediction of the FRN effect is feasiblgS1063-651X99)05408-3
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The Kolmogorov theories, which correspond to the y=—D_(r)/er and x=log;yr/7), 2
asymptotic case of infinite Reynolds number, have pro-
foundly shaped and illuminated thinking about turbulencewhere n=(»°/¢)¥*is the Kolmogorov length scale andis
[1]. However, experiments and numerical simulations arghe kinematic viscosity. The curvature of the curvey () in
made at finite Reynolds numbers. The finite Reynolds numthe x-y plane is
ber (FRN) effect of turbulence refers to the deviation of tur- 5 5 913/
bulence statistics observed at finite Reynolds numbers from Cr=d?y/dx*/[1+(dy/dx)“]*~ 3)
predictions of the Kolmogorov theoridg]. Let R, be the

Taylor-microscale Reynolds number. It is commonly as'thex-y plane, and its curvatui@g= 0. For the scaling range

sumed that the FRN effect decays quite fasRadncreases observed at experiment®) , the curve ofy(x) is below the

and can be ne_gle_:cted at expe_nmerR@I_(lOz—lO?), SO the . line y=0.8, and the shortest distance from the curve to the
turbulence statistics observed in experiments and simulations

can be described by the Kolmogorov theolfig§ In fact, in orizontal liney=0.8 of the inertial range is

many cases, thig assumption is not reasonablg and leadsto as—_ g y(X;) =0.8— maximum of [— D, (r)/er].
faulty interpretation of datf2,4]. In order to decide whether (4)
the FRN effect is important at giveR, , it is necessary to

study how the FRN effect decays & increases. In this y attains its maximuny(X,) atXy,=10g:o(rm/ 7). The cur-
paper, from exact spectral equations, we derive the decayature atx,, is negative, and its absolute value(dsy/dx at
law of the FRN effect and determine all relevant constantx=x, is zerg

for typical fully developed turbulent flows, so that the quan-

titative prediction of the FRN effect is feasible. The study of ¢=|Cr(Xm)| =|d?y/dX* at x=Xy|. 5

the FRN effect helps to resolve many issues in the statistical . K h inertial lati f
physics of turbulence. Since we know the exact inertial-range relatiot) for

In the inertial range, the third-order structure functionPrLL(r), itis convenient to us®,, (r) to study the finite
D,..(r) becomeg3] Reynolds numbe(FRN) effect, and the shortest distanée
and the curvatureb are the proper measure of the FRN ef-
D L(r)=—(4/5er or —D_ (r)/er=08, (1) fect:( W<eewnl prove thats and ¢ have the same decay expo-
nentu<g,

The 4/5 law(1) corresponds to the horizontal lie=0.8 in

which is Kolmogorov's 4/5 law. Here,is the distance and
is the energy dissipation rate. From Ed), D, (r) scales

asr in the inertial range, so the popular method of finding the C,, andC,, will be determined for typical fully devel-
inertial range in experiments is to make a log-log plot Ofobed t,urbulendé flows.

Dy (r) againstr, and then the approxima®,  (r)~r By a similar process of deriving Eq12.142 of the
scaling range in the plot is taken as the inertial rajgjeFor Monin-Yaglom (MY ) book[3], we have
example, the scaling range is about one decade, at800

[5]. However, in the so-called inertial range observed at ex- y=—D (r)/er

perimentalR, , Eq. (1) is not valid, since—=D (r)/er is

substantially less than 0.8 and is not a constant independent _ 12f°° KT 22 sin( 2) + _aai 6

of r [2]. Hence, the approximat®, ,(r)~r scaling range 0 Gllolzsin(z) +3z cos2) - 3 sin2)}/2°dz,
found at experimentaR, , which is commonly called the

5=C, R * and ¢=C,R* if R>1.  (6)

inertial range in the literature, actually is not the real inertial z=kr, (7)
range, and will be called the scaling range in this paper to
distinguish it from the real inertial range. Let G(k)=kT(k)/e, (8)
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A linear transform fromG(k) to y(r) is defined by Eq.
(7) and is denoted by’. By using the additive propert{),
we have

y=Y[G]=yi1t+y., Y1=¥[G4],
Vo=Y[G,]=V[2vk3E(k)/e]. (14)

Let L be the characteristic large scale akg=1/» be the
Kolmogorov wave number. In the universal ranige 1/L,
we have[3,6]

E(k)=Koe?%k %¥F (k/ky), F(0)=1, (15)
FIG. 1. Log-log plot of (0.8-y,) vsr/r. for Eq. (213 with y

=2 anda=1%, 2 % andZ O O O, numerical results—, Eq. whereK, is the Kolmogorov constant. The energy relation-
(22); - , a=c or the &function model(23). The diagram for  ShiP is

vy=5 or 20 is similar. . .
f 2vk?E(k)dk=¢ or f G,/kdk=1. (16

where T(k) is the energy transfer spectrum function and 0 0

G(k) is a dimensionless function. Generally speakiBgk)

or T(k) has the additive property From Eqs.(7), (14), (15), and(16), we obtain

__ T T I
G(K)=G,+G,, G,=2vk*E(K)/s. ©) yo= = Calr/m) "= i p=<r<L, (179

— 4 —
Here E(K) is the three-dimensional energy spectrum &nd C2=(324/55T'(5)Ko=5.2&,, (17b
corresponds to the energy dissipation at small scales due to,

viscosity. TheG; corresponds to the energy input at Iargemggaﬁs&;ﬁ;g?ogenved by Kolmogorov's equatidnis
scales, and its form is derived for the following typical cases Now we studyy,=W¥[G,]. Since [ZT(k)dk=0, from

of fully developed turbulence.
Case (i). Freely decaying isotropic turbulendthe spec-  E9S-(8), (9), and(16), we have

tral equation is " "
f G/kdk=0 and J G,/kdk=-1, (18
0

JE(K)/ at+ 2vk?E(k)=T(K), (10 0

(see the MY book3]). From Eqgs(8), (9), and(10), we have henceG,(0)=0. In the scaling range, ili<k<ky,

G1=K(IE(K)/at)/e. (11) G~k (19
where the exponent depends upon the type of turbulence
Case (ii). Homogeneous shear flow turbuleritiee coor-  and is determined later. By E(L8), the characteristic wave
dinates &;,X,,X3) are chosen in such a way that the mainnumberk, of energy input is defined by
parallel flow is along thex; direction and has a constant
velocity gradientS=dU,(x,)/dx,. The spectral equation is

[6]

T(k) = S{47K[ E1olay— 27k [ K1 dE; /K)o +2vk?E(K).  Various reasonable models Gf;, compatible with Eqs(18)
(12 and(19) andG,(0)=0, have been tested, for examplising
a proper unit ok, which is of order 1.):

ke %
f Gllkdk=f G, /k dk=—1. (20)
0

c

Here Ej; is the spectrum tensoE;; =E;;+Ey+Eg; is its

contraction, andl ],, means Batchelor's average. In isotropic G1(k)=CNK/(1+Kk*"7),
turbulence, the correlation or spectrum functions depends on
one single scalar only, namely the distancer the wave Cy is determined by Eq(18); (21a

numberk. However, that is no longer valid in the nonisotro-
pic case. Batchelor suggested averaging the correlation or  G,(k)=0 if k<1, Gyk)=—ak * if k=1;

spectrum functions over all directions 10br k, and then the (21b
resultant average functions dependraor k only. Moreover,

important relations of isotropic turbulence statistics are also Gi(k)=Cynexd —(B/k) k™ ¢,

valid for these average functions of nonisotropic turbulence

[6]. In Eq.(12), T(k) andE(k) are also Batchelor's average Cy is determined by Eq(18); (210

functions[6]. From Eqgs.(8), (9), and(12), we have
Gi(k)=Cpk” if k<1, Gy(k)=Cyk™* if k=1;
G1=SK47kY Eqpla— 27k [k IEji Iy ]t e. (13) (210
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TABLE |. CoefficientC; in Eqg. (22) for various models o5, .

Model of G, a=% (m=3% a=% (m=3%) a=%(m=3%)
Eq. (21a, y=2 0.297 0.236 0.212
Eq.(21a, y=5 0.297 0.232 0.192
Eq. (218, y=20 0.297 0.232 0.190
Eq. (210 0.297 0.232 0.190
Eq. (210, y=2, B=% 0.297 0.237 0.218
Eq. (210, y=2, B=2 0.297 0.237 0.218
Eq. (21d), y=2 0.297 0.232 0.189
Eq. (21d), y=20 0.297 0.232 0.190

Cy is a normalization factor determined by Ed8). By Egs.
(7), (14), and(21), we calculatey;=V¥[G;] numerically. A
log-log plot of (0.8-y,) versusr/r is given in Fig. 1 for
Eq.(21a, wherer .= 1/k; and is determined by E¢20). The
same diagram as Fig. 1 is obtained for E2Lb) or Eq. (210
or Eq.(21d). In summary, we have

0.8—y;=Cy(r/ry)™ if r<rg,

(229
(22b)

ro=121/k.,

m=a Iif a<2 and m=2 if a>2.
The coefficienC, is determined by the least-squares metho
for r/r.<1, and is given in Table | for various models of
G,. Table | shows thaC; mainly depends omv, and the
behavior ofG, aroundk, has little effect ory, atr<r.. The
expression of the dotted line in Fig. 1 is

0.8—y,=(2/35)(r/r¢)?, (239
which corresponds ta= < or the Diracé-function model of
energy input, i.e.,

Gi(k)=—kdé(k—kg). (23b
From Egs.(2), (14), (17), and(22), we obtain the important
relation

y=—D 1 (r)/er=0.8-Cy(r/ro)™—Cy(r/n) 43

if p<r<r.. (29
Hence, strictly speaking, the 4/5 laid) is valid only for the
case ofr./p—x (i.e., R,—=). The last two terms of Eq.
(24) correspond to the FRN effectC;>0 and C,>0,
so —D . (r)/er must be less thaf in the scaling range at
a finite R, .

Now we determine the exponenssand m of Egs. (19
and(22). In case(i), freely decaying isotropic turbulendg,

TABLE Il. u, Cs, andC, in Egs.(6) and(29) for typical « and
Ko.

a=3(m=35), u=3 a=35(m=3), u=1
1.2 5404 25+2 18+2 17515
15 6.8-0.4 32£2 25+3 243+22
18 8.1x0.5 383 34+3 320+ 28

is given by Eq.(11); at the stage of self-preservation of the
energy spectrum in the universal equilibrium range, a steady
k5% scaling range is observed, BoE(k)/dt]~k >?in the
scaling range, and we have
G,~k™® a=3 for the case(i). (25)
In case(ii), the term 47k?[E,],, in Eq. (13) corresponds to
the shear stress cospectrim(k) of [7], and its decay is not
more rapid thark™ " in the k™3 scaling rangd7], i.e.,
ATk Eqpla~k ¢ (¢<I). The termk?[k,dE; /dKp]ay in

%q. (13 equals o[k k;k.E; T}/ ok, and its decay is not

slower thanE(k) =27k Eji]ay [6], SO k[KidE;; /Ko ]ay
~k™¢ (£=3%) in thek 5 scaling range. From Eq13), we
conclude that in the scaling range of homogeneous shear
flow turbulence,

G~k % ij<asi, (26)
which is expected to be applicable in tke®? scaling range
of an inhomogeneous turbulence at a high, since the
inhomogeneous effect is negligible in the small-scale range.
According to Lumley’s worK 8], in the wall turbulence, the
additive property(9) is also valid andG; also contains the
terms of Eq.(13).

By Egs.(2)—(5) and(24), it is easy to express the shortest

distances and the curvaturep in terms ofr./#», but it is

o8 Ry=800

0.75F

0.7L 1
0.1 1

Ty 10

FIG. 2. Linear-log plot ofy=—D  (r)/er vs r/r, for R,
=800; y attains its maximunmy(r,,) atr=r,, Ky=1.2, andn
=2.—, a=§ or 3; , a=o or the &function model(23).
When K, increases from 1.2 to 1.5, the curves move down, the
shortest distance=0.8-y(r,,), and the curvaturep increases
about 25—-40 %.
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FIG. 3. As Fig. 2, but foR, = 3000.

better to express them in terms®f . The method of calcu-
lating R, is described if2] for the energy spectrun®]

E(k)=K ek 5% (k/kg)/[ 1+ (ko /K)" "53], (27)

The resultanR, is a function ofky/ky= 7k,. By using the
T(k) of [2] and Eqgs(8), (9), and(20), we determine the ratio
ko/k.=rcky, and we obtain

re/ n=BRY2. (28
The coefficientB depends orK, andn of Eq. (27): when
1=n=<4, B=0.041+0.006 for Ko=1.2, B=0.029+0.005
for Ky=1.5, andB=0.022+0.004 forK,=1.8. Finally, by
using Egs.(2)—(5), (24), and(28), we obtain the decay law
(6) and

w=6m/(3m+4), (299

Cs=[1+4/(3m)]D, C,=7.0694/3+m)D, (29b

D= Cgm/(3m+4)(3mCl/4)4/(3m+4)/B4m/(3m+4)' (290)

From Eqgs(22b) and(29a), we obtainu<2. Theu, C,, and
C, for the most interesting cases=2 and 3 are given in
Table II. By using Eqs(17b) and(24) and Table I, a linear-
log plot of =D (r)/er againstr/r,, is given in Figs. 2 and
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=D (r)/er is also greater than 4/5 in Figs. (b) and(11)

of Anselmetet al. [5] and Fig. 16 of Saddoughi and Veer-
avalli [7]. However, according to Figs. 2 and 3 of this paper,
the maximum of-D | (r)/er should be less than 4/5 in the
scaling range. In plotting Fig. 16 ¢7], Saddoughi and Veer-
avalli determine the dissipatianby Eq. (1), in other words,
they assume that the FRN effect is negligible in the scaling
range around/n=10 at R, =600—1450. They found that
their e=—5D | (r)/(4r) is substantially lower than the
determined by the one-dimensiondD) energy spectrum
and did not give an explanatidi]. In fact, the FRN effect
cannot be neglected and Edl) is not valid at R,
=600-1450, so—5D  (r)/(4r) is substantially lower
than the dissipatios. If the £ determined by the 1D energy
spectrum is used in plotting Fig. 16 pf], the maximum of
=Dy (r)/er will be substantially less than 4/5, in agree-
ment with our results.

Let us make a summary. Kolmogorov's 4/5 laW) is
valid in the inertial range corresponding to infinite, .
WhenR, is high but finite,D (r) is given by Eq.(24) in
the scaling range, and the consta@tsandC, in Eq. (24)
are given by Table | and Eq17b); sinceC;>0 andC,
>0, =D (r)/er must be less than 4/5 and changes with
in the scaling range, so the scalibg  (r)~r is not exact.
From the exact spectral equations, we derive the decay law
(6) and (29) of the FRN effect and determine all relevant
constants so that the quantitative prediction of the FRN ef-
fect is feasible. The decay exponents g, its upper limit
case of(a=%, m=2, u=2) corresponds to thé-function
model of energy input at large scales, &vdu<1 for typi-
cal fully developed turbulent flows. The FRN effect decays
slowly and cannot be neglected at experimerigl, as
shown in Figs. 2 and 3. Hence, the scaling rafgkich is
commonly called the inertial range in the literatuobserved
in experiments or simulations is not the real inertial range,
which calls for reexamining the interpretation of the so-
called inertial range data of experiments and simulations. An
interesting example is that some experimental and numerical
data (which were previously interpreted as the evidence of
anomalous scalingactually favor the normal scaling of tur-

3 for R, =800 and 3000, which clearly show that the FRN bulence, and the anomalous scaling is a consequence of the

effect is important at experiment®, .
Many papers report-D (r)/er obtained in experi-

FRN effect[4].

ments and simulations. For example, in Fig. 2 of Sreenivasan The work was supported by the Natural Science Founda-

et al. [10], =D (r)/er attains its maximum around/ 7

tion of China and the research program “Non-linear Sci-

=10%, which is greater than 4/5. The maximum of enc.”
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