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Slow decay of the finite Reynolds number effect of turbulence
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Department of Physics, Graduate School of Academia Sinica, P.O. Box 3908, Beijing 100039, China

~Received 5 November 1998!

The third-order structure function is used to study the finite Reynolds number~FRN! effect of turbulence,
which refers to the deviation of turbulence statistics observed at finite Reynolds numbers from predictions of
the Kolmogorov theories. It is found that the FRN effect decreases asCRl

2m , whenRl is high, andm<6/5.
HereRl is the Taylor-microscale Reynolds number andC is a constant independent ofRl . From the exact
spectral equations, the decay exponentm and the constantC are determined for typical fully developed
turbulent flows ~freely decaying isotropic turbulence and shear flow turbulence!, so that the quantitative
prediction of the FRN effect is feasible.@S1063-651X~99!05408-2#

PACS number~s!: 47.27.Gs, 47.27.Jv
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The Kolmogorov theories, which correspond to t
asymptotic case of infinite Reynolds number, have p
foundly shaped and illuminated thinking about turbulen
@1#. However, experiments and numerical simulations
made at finite Reynolds numbers. The finite Reynolds nu
ber ~FRN! effect of turbulence refers to the deviation of tu
bulence statistics observed at finite Reynolds numbers f
predictions of the Kolmogorov theories@2#. Let Rl be the
Taylor-microscale Reynolds number. It is commonly a
sumed that the FRN effect decays quite fast asRl increases
and can be neglected at experimentalRl (102– 103), so the
turbulence statistics observed in experiments and simulat
can be described by the Kolmogorov theories@3#. In fact, in
many cases, this assumption is not reasonable and leads
faulty interpretation of data@2,4#. In order to decide whethe
the FRN effect is important at givenRl , it is necessary to
study how the FRN effect decays asRl increases. In this
paper, from exact spectral equations, we derive the de
law of the FRN effect and determine all relevant consta
for typical fully developed turbulent flows, so that the qua
titative prediction of the FRN effect is feasible. The study
the FRN effect helps to resolve many issues in the statis
physics of turbulence.

In the inertial range, the third-order structure functi
DLLL(r ) becomes@3#

DLLL~r !52~4/5!«r or 2DLLL~r !/«r 50.8, ~1!

which is Kolmogorov’s 4/5 law. Here,r is the distance and«
is the energy dissipation rate. From Eq.~1!, DLLL(r ) scales
asr in the inertial range, so the popular method of finding t
inertial range in experiments is to make a log-log plot
DLLL(r ) against r, and then the approximateDLLL(r );r
scaling range in the plot is taken as the inertial range@5#. For
example, the scaling range is about one decade atRl5800
@5#. However, in the so-called inertial range observed at
perimentalRl , Eq. ~1! is not valid, since2DLLL(r )/«r is
substantially less than 0.8 and is not a constant indepen
of r @2#. Hence, the approximateDLLL(r );r scaling range
found at experimentalRl , which is commonly called the
inertial range in the literature, actually is not the real inert
range, and will be called the scaling range in this pape
distinguish it from the real inertial range. Let
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y52DLLL~r !/«r and x5 log10~r /h!, ~2!

whereh5(n3/«)1/4 is the Kolmogorov length scale andn is
the kinematic viscosity. The curvature of the curve ofy(x) in
the x-y plane is

CR5d2y/dx2/@11~dy/dx!2#3/2. ~3!

The 4/5 law~1! corresponds to the horizontal liney50.8 in
thex-y plane, and its curvatureCR50. For the scaling range
observed at experimentalRl , the curve ofy(x) is below the
line y50.8, and the shortest distance from the curve to
horizontal liney50.8 of the inertial range is

d50.82y~xm!50.82maximum of @2DLLL~r !/«r #.
~4!

y attains its maximumy(xm) at xm5 log10(r m /h). The cur-
vature atxm is negative, and its absolute value is~dy/dx at
x5xm is zero!

f5uCR~xm!u5ud2y/dx2 at x5xmu. ~5!

Since we know the exact inertial-range relation~1! for
DLLL(r ), it is convenient to useDLLL(r ) to study the finite
Reynolds number~FRN! effect, and the shortest distanced
and the curvaturef are the proper measure of the FRN e
fect. We will prove thatd andf have the same decay expo
nentm< 6

5 ,

d5CdRl
2m and f5CfRl

2m if Rl@1. ~6!

m, Cd , and Cf will be determined for typical fully devel-
oped turbulent flows.

By a similar process of deriving Eq.~12.141! of the
Monin-Yaglom ~MY ! book @3#, we have

y52DLLL~r !/«r

512E
0

`

G~k!@z2 sin~z!13z cos~z!23 sin~z!#/z6dz,

z5kr, ~7!

G~k!5kT~k!/«, ~8!
3409 © 1999 The American Physical Society
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where T(k) is the energy transfer spectrum function a
G(k) is a dimensionless function. Generally speaking,G(k)
or T(k) has the additive property

G~k!5G11G2 , G252nk3E~k!/«. ~9!

HereE(k) is the three-dimensional energy spectrum andG2
corresponds to the energy dissipation at small scales du
viscosity. TheG1 corresponds to the energy input at lar
scales, and its form is derived for the following typical cas
of fully developed turbulence.

Case (i). Freely decaying isotropic turbulence.The spec-
tral equation is

]E~k!/]t12nk2E~k!5T~k!, ~10!

~see the MY book@3#!. From Eqs.~8!, ~9!, and~10!, we have

G15k~]E~k!/]t !/«. ~11!

Case (ii). Homogeneous shear flow turbulence.The coor-
dinates (x1 ,x2 ,x3) are chosen in such a way that the ma
parallel flow is along thex1 direction and has a constan
velocity gradientS5dU1(x2)/dx2 . The spectral equation i
@6#

T~k!5S$4pk2@E12#av22pk2@k1]Eii /]k2#av%12nk2E~k!.
~12!

Here Ei j is the spectrum tensor,Eii 5E111E221E33 is its
contraction, and@ #av means Batchelor’s average. In isotrop
turbulence, the correlation or spectrum functions depend
one single scalar only, namely the distancer or the wave
numberk. However, that is no longer valid in the nonisotr
pic case. Batchelor suggested averaging the correlatio
spectrum functions over all directions ofr or k, and then the
resultant average functions depend onr or k only. Moreover,
important relations of isotropic turbulence statistics are a
valid for these average functions of nonisotropic turbulen
@6#. In Eq. ~12!, T(k) andE(k) are also Batchelor’s averag
functions@6#. From Eqs.~8!, ~9!, and~12!, we have

G15Sk$4pk2@E12#av22pk2@k1]Eii /]k2#av%/«. ~13!

FIG. 1. Log-log plot of (0.82y1) vs r /r c for Eq. ~21a! with g
52 anda5
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3. s s s, numerical results; , Eq.
~22!; •••••, a5` or the d-function model~23!. The diagram for
g55 or 20 is similar.
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A linear transform fromG(k) to y(r ) is defined by Eq.
~7! and is denoted byC. By using the additive property~9!,
we have

y5C@G#5y11y2 , y15C@G1#,

y25C@G2#5C@2nk3E~k!/«#. ~14!

Let L be the characteristic large scale andkd51/h be the
Kolmogorov wave number. In the universal rangek@1/L,
we have@3,6#

E~k!5K0«2/3k25/3F~k/kd!, F~0!51, ~15!

whereK0 is the Kolmogorov constant. The energy relatio
ship is

E
0

`

2nk2E~k!dk5« or E
0

`

G2 /kdk51. ~16!

From Eqs.~7!, ~14!, ~15!, and~16!, we obtain

y252C2~r /h!24/3 if h!r !L, ~17a!

C25~324/55!G~ 4
3 !K055.26K0 , ~17b!

which can also be derived by Kolmogorov’s equation;G is
the Gamma function.

Now we studyy15C@G1#. Since *0
`T(k)dk50, from

Eqs.~8!, ~9!, and~16!, we have

E
0

`

G/k dk50 and E
0

`

G1 /k dk521, ~18!

henceG1(0)50. In the scaling range, 1/L!k!kd ,

G1;k2a, ~19!

where the exponenta depends upon the type of turbulenc
and is determined later. By Eq.~18!, the characteristic wave
numberkc of energy input is defined by

E
0

kc
G1 /k dk5E

kc

`

G1 /k dk52 1
2 . ~20!

Various reasonable models ofG1 , compatible with Eqs.~18!
and~19! andG1(0)50, have been tested, for example~using
a proper unit ofk, which is of order 1/L!:

G1~k!5CNkg/~11ka1g!,

CN is determined by Eq.~18!; ~21a!

G1~k!50 if k,1, G1~k!52ak2a if k>1;
~21b!

G1~k!5CN exp@2~b/k!g#k2a,

CN is determined by Eq.~18!; ~21c!

G1~k!5CNkg if k,1, G1~k!5CNk2a if k>1;
~21d!
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TABLE I. CoefficientC1 in Eq. ~22! for various models ofG1 .

Model of G1 a5
1
3 (m5

1
3 ) a5

2
3 (m5

2
3 ) a5

4
3 (m5

4
3 )

Eq. ~21a!, g52 0.297 0.236 0.212
Eq. ~21a!, g55 0.297 0.232 0.192
Eq. ~21a!, g520 0.297 0.232 0.190
Eq. ~21b! 0.297 0.232 0.190
Eq. ~21c!, g52, b5

1
2 0.297 0.237 0.218

Eq. ~21c!, g52, b52 0.297 0.237 0.218
Eq. ~21d!, g52 0.297 0.232 0.189
Eq. ~21d!, g520 0.297 0.232 0.190
o
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the
CN is a normalization factor determined by Eq.~18!. By Eqs.
~7!, ~14!, and~21!, we calculatey15C@G1# numerically. A
log-log plot of (0.82y1) versusr /r c is given in Fig. 1 for
Eq. ~21a!, wherer c51/kc and is determined by Eq.~20!. The
same diagram as Fig. 1 is obtained for Eq.~21b! or Eq.~21c!
or Eq. ~21d!. In summary, we have

0.82y15C1~r /r c!
m if r !r c , r c51/kc , ~22a!

m5a if a,2 and m52 if a.2. ~22b!

The coefficientC1 is determined by the least-squares meth
for r /r c!1, and is given in Table I for various models o
G1 . Table I shows thatC1 mainly depends ona, and the
behavior ofG1 aroundkc has little effect ony1 at r !r c . The
expression of the dotted line in Fig. 1 is

0.82y15~2/35!~r /r c!
2, ~23a!

which corresponds toa5` or the Diracd-function model of
energy input, i.e.,

G1~k!52kd~k2kc!. ~23b!

From Eqs.~2!, ~14!, ~17!, and~22!, we obtain the importan
relation

y52DLLL~r !/«r 50.82C1~r /r c!
m2C2~r /h!24/3

if h!r !r c . ~24!

Hence, strictly speaking, the 4/5 law~1! is valid only for the
case ofr c /h→` ~i.e., Rl→`!. The last two terms of Eq
~24! correspond to the FRN effect.C1.0 and C2.0,
so 2DLLL(r )/«r must be less than45 in the scaling range a
a finite Rl .

Now we determine the exponentsa and m of Eqs. ~19!
and~22!. In case~i!, freely decaying isotropic turbulence,G1

TABLE II. m, Cd , andCf in Eqs.~6! and~29! for typical a and
K0 .

K0

a5
2
3 (m5

2
3 ), m5

2
3 a5

4
3 (m5

4
3 ), m51

Cd Cf Cd Cf

1.2 5.460.4 2562 1862 175615
1.5 6.860.4 3262 2563 243622
1.8 8.160.5 3863 3463 320628
d

is given by Eq.~11!; at the stage of self-preservation of th
energy spectrum in the universal equilibrium range, a ste
k25/3 scaling range is observed, so@]E(k)/]t#;k25/3 in the
scaling range, and we have

G1;k2a, a5 2
3 for the case~i!. ~25!

In case~ii !, the term 4pk2@E12#av in Eq. ~13! corresponds to
the shear stress cospectrumE12(k) of @7#, and its decay is not
more rapid thank27/3 in the k25/3 scaling range@7#, i.e.,
4pk2@E12#av;k2z (z< 7

3 ). The term k2@k1]Eii /]k2#av in
Eq. ~13! equals ]$k@k1k2Eii #av%/]k, and its decay is not
slower than E(k)52pk2@Eii #av @6#, so k2@k1]Eii /]k2#av
;k2z (z> 5

3 ) in the k25/3 scaling range. From Eq.~13!, we
conclude that in the scaling range of homogeneous sh
flow turbulence,

G1;k2a, 2
3 <a< 4

3 , ~26!

which is expected to be applicable in thek25/3 scaling range
of an inhomogeneous turbulence at a highRl , since the
inhomogeneous effect is negligible in the small-scale ran
According to Lumley’s work@8#, in the wall turbulence, the
additive property~9! is also valid andG1 also contains the
terms of Eq.~13!.

By Eqs.~2!–~5! and~24!, it is easy to express the shorte
distanced and the curvaturef in terms of r c /h, but it is

FIG. 2. Linear-log plot ofy52DLLL(r )/«r vs r /r m for Rl

5800; y attains its maximumy(r m) at r 5r m , K051.2, andn
52. , a5

2
3 or 4

3; •••••, a5` or the d-function model~23!.
When K0 increases from 1.2 to 1.5, the curves move down,
shortest distanced50.82y(r m), and the curvaturef increases
about 25–40 %.
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better to express them in terms ofRl . The method of calcu-
lating Rl is described in@2# for the energy spectrum@9#

E~k!5K0«2/3k25/3F~k/kd!/@11~k0 /k!n15/3#. ~27!

The resultantRl is a function ofk0 /kd5hk0 . By using the
T(k) of @2# and Eqs.~8!, ~9!, and~20!, we determine the ratio
k0 /kc5r ck0 , and we obtain

r c /h5BRl
3/2. ~28!

The coefficientB depends onK0 andn of Eq. ~27!: when
1<n<4, B50.04160.006 for K051.2, B50.02960.005
for K051.5, andB50.02260.004 forK051.8. Finally, by
using Eqs.~2!–~5!, ~24!, and ~28!, we obtain the decay law
~6! and

m56m/~3m14!, ~29a!

Cd5@114/~3m!#D, Cf57.069~4/31m!D, ~29b!

D5C2
3m/~3m14!~3mC1/4!4/~3m14!/B4m/~3m14!. ~29c!

From Eqs.~22b! and~29a!, we obtainm< 6
5 . Them, Cd , and

Cf for the most interesting casesa5 2
3 and 4

3 are given in
Table II. By using Eqs.~17b! and~24! and Table I, a linear-
log plot of 2DLLL(r )/«r againstr /r m is given in Figs. 2 and
3 for Rl5800 and 3000, which clearly show that the FR
effect is important at experimentalRl .

Many papers report2DLLL(r )/«r obtained in experi-
ments and simulations. For example, in Fig. 2 of Sreeniva
et al. @10#, 2DLLL(r )/«r attains its maximum aroundr /h
5102, which is greater than 4/5. The maximum

FIG. 3. As Fig. 2, but forRl53000.
-

, J
.

n

2DLLL(r )/«r is also greater than 4/5 in Figs. 10~b! and~11!
of Anselmetet al. @5# and Fig. 16 of Saddoughi and Vee
avalli @7#. However, according to Figs. 2 and 3 of this pap
the maximum of2DLLL(r )/«r should be less than 4/5 in th
scaling range. In plotting Fig. 16 of@7#, Saddoughi and Veer
avalli determine the dissipation« by Eq. ~1!, in other words,
they assume that the FRN effect is negligible in the scal
range aroundr /h5102 at Rl5600– 1450. They found tha
their «525DLLL(r )/(4r ) is substantially lower than the«
determined by the one-dimensional~1D! energy spectrum
and did not give an explanation@7#. In fact, the FRN effect
cannot be neglected and Eq.~1! is not valid at Rl

5600– 1450, so25DLLL(r )/(4r ) is substantially lower
than the dissipation«. If the « determined by the 1D energ
spectrum is used in plotting Fig. 16 of@7#, the maximum of
2DLLL(r )/«r will be substantially less than 4/5, in agre
ment with our results.

Let us make a summary. Kolmogorov’s 4/5 law~1! is
valid in the inertial range corresponding to infiniteRl .
WhenRl is high but finite,DLLL(r ) is given by Eq.~24! in
the scaling range, and the constantsC1 and C2 in Eq. ~24!
are given by Table I and Eq.~17b!; since C1.0 and C2
.0, 2DLLL(r )/«r must be less than 4/5 and changes withr
in the scaling range, so the scalingDLLL(r );r is not exact.
From the exact spectral equations, we derive the decay
~6! and ~29! of the FRN effect and determine all releva
constants so that the quantitative prediction of the FRN
fect is feasible. The decay exponentm< 6

5 , its upper limit
case of~a5`, m52, m5 6

5 ! corresponds to thed-function
model of energy input at large scales, and2

3 <m<1 for typi-
cal fully developed turbulent flows. The FRN effect deca
slowly and cannot be neglected at experimentalRl , as
shown in Figs. 2 and 3. Hence, the scaling range~which is
commonly called the inertial range in the literature! observed
in experiments or simulations is not the real inertial ran
which calls for reexamining the interpretation of the s
called inertial range data of experiments and simulations.
interesting example is that some experimental and nume
data ~which were previously interpreted as the evidence
anomalous scaling! actually favor the normal scaling of tur
bulence, and the anomalous scaling is a consequence o
FRN effect@4#.
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